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0. Introduction.

Suppose u 1is a finite population of N distinct units.

Let 8 be the set of all subsets based on the elements of

uU. A sampling design, d, based on u is a pair (Sd’Pd)’
where S, 1is a subset of 8 and P, = (pd(s), s € 8,4 1is

a probability distribution on S To guarantee the esti-

q°
mability of the basiz parameters of u, such as the popula-
tion total, we insist that the union of the subsets in S(1
be u and Py(s) > O for each s in S,.

The first order inclusion probability of the unit i
under d 1is defined to be

me(1) = % Pais),

and the second order (Jjoint) inclusion probability of the

units 1 and J (i 4 j) ‘under d is

n (i:J) - z P (S)-
= s31,J -
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Since the introduction of unequal probability sampling
by Horvitz and Thompson (1952), the emphasis in the theory
has been towards working with the above inclusion proba-
bilities. This paper is mainly concerned with problems re-
lated to these inclusion probabilities.

Two sampling designs d, and d, are said to be equi-
valent with respect to these inclusion probabilities if:

n (i) =1 (i): n (i:') =T (i, s Yi,J.
a a, a, 1+ a, 3) J

This paper studies the extent to which these inclusion prob-
abllities characterize the sampling designs. This study has
led us to sampling designs which have applications in con-
trolled sampling. We have studied the following problem,
among others. The classical simple random sample of size n
based on u, denoted SRS(N,n), is a sampling design whose
support, Sd, consists of all (ﬂ) possible samples of size n
and whogse probability distribution ’Pd’ is uniform on the
support. Thus a problem of interest is to find sampling de-
signs equivalent to SRS(N,n) but whose support sizes may be
less than (}) and for which the probability distribution
on their supports may or may not be uniform. It is shown
that this can always be done. Such sampling designs have
applications to controlled sampling.




l. Preliminaries

Let u = (Ul,Uz,...,UNj be a population of N identi-
fiable units. . Let 8 ©be the power set of Uu, i.e., the set
of all subsets based on the elements of u. Note that the
cardinality (size) of & is ZN. Hereafter we shall refer
to the ﬁnits in u by their indices. Thus the unit Ui
will be referred to by "i".

Definition 1.1l. A sampling design, d, based on u is a

pair (Sd’ Pd)’ where Sd is a subset of & and
Py = [pd(s), s € 544 is a probability distribution on Sy
To guarantee the estimability of the basic parameters(l)

of u we insist that the union of the subsets in S be

d
u and pd(s) >0 for each s in S,.

Throughout the paper the cardinality of a set Z will
be denoted by c(z).

Def;nition 1.2. Sy is called the support of d and c(Sd)
is called the support size of d.

Definition 1.3. A sampling design is said to be a uniform

sampling design if Pd is uniform on Sd‘

N
(1) Such as the population total Y = £ Y,, where Y, is
i=1

the value of a real-valued function on the unit 1i.
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Definition 1.4. Ve say a sampling design d 1is of g8ize n

if c(s) = n for all s 1in Sd'

In the sequel we shall refer to the elements of Sd as
samples and a sample in Sd selected by implementing Pd
as a probability sample. Perhaps the most adopted sampling
design in practice is a sampling design which is known as
a simple random sample design of size n which can be de-

fined under our notation as:

Definition 1.5. A sampling design (Sd, Pd) based on Uu

of size N 1is said to be a simple random sample design of

size n, SRS(N, n), if
(1) Sq consists of all <ﬂ) subsets of size n Ybased
on Uu,

N
(11) Pd is uniform on Sd’ i.e., p(s) = l/(n).

In this paper we shall deal with sampling designs whose
first order and second order inclusion probabilities are
identical to the corresponding probabilities of simple
random sample designs but whose support sizes may be less
than (g) and for which Pd may or may not be uniform.
Such sampling designs have applications in the area of
controlled sampling. The first order and second order

inclusion probabilities are studied in Section 2.

o




2. Inclusion probabilities.

Since the introduction of unequal probability sampling
by Horvitz and Thompson (1952) the emphasis in the theory
has been towards working with the first and second order
inclusion probabilities associated with sampling designs.
These probabilities are defined as:

The first order inclusion probability associated with
the unit i in u wunder the sampling design d = (Sd’ Pd)
] is

m,(1) = sgipd(s). (1)

This is the probability of selecting the unit 1 if we
implement the sampling design d.
The second order (Jjoint) inclusion probability associated

with the units i and J (i 4 j) in w under d 1is

nd(i:J) = sBi,de(S). (2)

This is the probability of simultaneously selecting the
units i and j if we implement the sampling design d.

Some known linear constraints on the inclusion probabi-

lities Hi's and "13'8 are:

Proposition 2.1. Under the sampling design d |

N
121"d(i) = g c(s)py(s), (3)




N
i(=|r,j)nd(i »3) = s§J[C(S) llp4(s), (%)
s N (1,3) (s)le(s)-11p,(
TGt =
1§l J(#i) q(isd 2 c(s)le(s)-11p,(s). . 15)

Corollary 2.1. If d 1is a sampling design of size n then

N

N
igl“d(i) n, i(ij)nd(i,j) = (n‘l)nd(J), J =1,2,..4,N

N N

EACEIERICETE (6)

Thus there are N + 1 distinet linear constraints on
nd(i)'s and nd(i,J)'s. If the samples in S4 are not

identical in size, then the expected sample size under d

is

expected sample size = § c(s)pd(s)
s

N
which is precisely ¢ nd(i) and thus it should not be
i=1

surprising that when d is a sampling design of size n
then

N
T nd(i) =n
i=1

whether or not d is uniform on its support.

it S o AN i o e M it 7., N sk




3. The problemg and background.

Because of the importance of nd(s)'s and nd(i,J)'s
in the theory of sampling it is interesting to investigate
the extent to which these inclusion probabilities character-
ize the sampling designs. For example, Hd(i) = n/N and
nd(i,J) = n(n-1)/N(N-1) if the sampling design is SRS(N,n).
Then is it true that SRS(N,n) is the only design with
nd(i) = n/N and ﬂd(i,,j) = n(n-1)/N(N-1)? The answer is
no. Indeed, such sampling designs exist which violate one
or both conditions of SRS(N,n) specified in Definition 1.5.

To formalize our problems we need the following definition.

Definition 3.1. Two sampling designs dl and d2 based

on u are saild to be equivalent with respect to the first

order and second order inclusion probabilities if

ndl(i) - "d (i) and "dl(i’J) = "dz(i:vj) (7)

2
Hereafter, for simplicity, we shall say two sampling
designs d, and d, are equivalent (designated by dy ~ dz)
if they are equivalent in the sense of Definition 3.1l. Note
that the condition LA (1) = L (i) implies that in order

i 2

d1 ~ d2 it is necessary that the expected sample size under
d1 should be equal to the expected sample size under d2’

a natural demand for the concept to be practically meaningful.




Problem 1. Given a sampling design dl’ what is the mini-

mum support size of a sampling design d2 equivalent to dl?

Problem 2. Suppose we are given a sampling design dl and
a sampling design d2 whose support size is minimum and is

equivalent to dg. Let M.d and Md be the support size
1 2
of d1 and d2 respectively. Then for what value of M,

Md < MK Md s 1s there a sampling design with support size
2 1l

M which is equivalent to dl?

These problems have not been fully solved as of to-day.
Our experience indicated that they will remain unsolved for
many years to come. Solutions to some aspects of these
problems have been obtained by Chakrabarti (1963), Wynn (1977),
Foody and Hedayat (1977), Hedayat and Li (1977) and Hedayat
and Rao (1978).

Chakrabarti (1963) noticed that one can relate a balanced
incomplete block (BIB) design based on N treatments in b
blocks of size n to a sampling designh by considering the
blocks as samples and treatments as units and letting
p(s) = 1/b where s is a block of the design. Thus he
proved that

Theorem 3.1. A uniform sampling design of size n based on

a population of size N is equivalent to SRS(N,n) 4if and

only if it is associated with a BIB design with no repeated
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blocks on N treatments in blocks of size n.

Chakrabarti (1963) did not ive any practical applica-
tions of sampling designs with support size less than (g)
and equivalent to SRS(N,n). Perhaps due to this lack of
practical motivation of the problem solved by Chakrabarti,

no further works on this subject came to print for a decade.

Avadhani and Sukhatme (1973) discussed sampling designs
associated with BIB designs and gave some meaningful prac-
tical applications of such designs in controlled sampling.
For actual examples of controlled sampling see, for example,

Goodman and Kish (1950) and Avadhani and Sukhatme (1973).

A more systematic study of Problem 1 was done by Wynn
(1977), who used Caratheodory's theorem [see Rockafellar
(1970), p. 151] and, for example, proved that

Theorem 3.2. If d, is a sampling design of size n based

on a population of size N then there is a sampling design

d, » d; with support size no greater than N(N-1)/2.

For example, if d, is SRS(8,3) then there is a
sampling design d2 ~ dl whose support size is no greater
than 8(7)/2 = 28. For N=8 and n =3 the lower bound
28 1is not sharp. Wynn (1977) gave an example of a sampling

design with support size 24 equivalent to SRS(8,3).

P
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Foody and Hedayat (1977) formalized the concept of

sampling design of size n based on a population of size

N equivalent to SRS(N,n) in the language of matrix alge-
bra and mathematical programming and obtained several re-
sults in the terminology of BIB designs with repeated blocks.
To point out some of their results and present further work
in the area we need some notation and definitions which are
given in Section 4. 1In the rest of the paper we shall limit

our study to sampling designs of size n.

4. Sampling designs in the language of matrix algebra and
mathematical programming.

A 2-element subset of u of size N will be called a
pair and an n-element subset will be called a sample of
size n. Let P denote the incidence matrix (do not confuse
with Pd) of pairs versus blocks. So P 1is a (g) by
(2) zero-one matrix. Ovrder the <§> samples of size n
in some fashion and let D be a multiset (a set which
allow the elements to appear with multiplicity) based on
(ﬁ) samples of size n. We write f, for the frequency
of the ith sample of size n in D. Let
Fp = (fl’fZ""’f(ﬁ)),' Foody and Hedayat (1977) proved

that




Theorem .1, A frequency vector FD determines a sampling

design equivalent to SRS(N,n) if and only if

PFp = Al (8)

where A is a positive integer and 1 is a column vector

of all ones.

Proof. The sampling design, d, associated with FD can be

constructed as follows: Let Sd consist of those n-element

subsets of W whose corresponding f's in FD is not

zero. The probability associated with a sample in S will

d
be the corresponding f divided by Zf,. Now by (8)

ntf /N
"d(i) bE B

and

: ey n(n-1)zf, /N(N-1) abaiy
Mg(i,3) = s }:flkL s 'N"{'N_-_l';

which shows that d ~ SRS(N,n). The necessity part of the

theorem can be similarly proved.

At this point we would like to point out that the sampling
design d associated with FD will have support size less
than (ﬁ) if one or more components of FD are zero and

d will be nonuniform if there exist 41 4 j such that
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Example 4.1, Let N =8 and k = 3. Then SRS(8,3) has

support size (g) = 56. The probability of each sample is
1/56. Based on Theorem 3.1 we exhibit below a sampling
design equivalent to SRS(8,3) which is nonuniform and has

support size 22.

Sample Probability Sample Probability
125 1/56 347 2/56
137 1/56 128 3/56
146 1/56 178 3/56
glis. 1/56 268 3/56
246 1/56 468 : 3/56
367 1/56 478 3/56
467 1/56 234 4/56
127 2/56 567 4/56
237 2/56 136 5/56
256 2/56 145 5/56
257 2/56 358 6/56

Clearly the above is a sampling design and the reader
can check for himself that for this design

R < TGS - Bin-1) _ §
ﬂd(i) =g =0 and nd(i,J) —W{Nn-}—gg
as in the case of SRS(8,3).

Table 1 in Foody and Hedayat (1977) provides BIB designs
which can be converted to nonuniform sampling designs with
all possible support sizes 22 to 55 when N =8 and
n =3, In this case SRS(8,3) is the only uniform sampling
design.

M P T i o Lrh—é--b-
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Theorem 3.1‘says that each feasible solution of

the system

PFp = Al, F, 20 (9)

corresponds to a sampling design equivalent to SRS(N,n).
The set of all rational feasible solutions to this system
corresponds to all sampling designs equivalent to SRS(N,n).
Now there is always at least one rational feasible solution
to (9), namely the solution corresponding to SRS(N,n)

with £, =1 and A = (p-2).
matical programming we know that all feasible solutions to

Using the language of mathe-

(9) are convex combinations of the basic feasible solutions,
so the search for all sampling designs equivalent to
SRS(N,n) reduces to finding all basic feasible solutions
to (9); that is, to finding all of the vertices of the
polytope defined by (9).

In practice we are not, of course, interested in finding
all solutions to (9). Rather, we seek a solution which ex-
cludes, or at least minimizes the selection probability of
certain samples. We may find such a sampling design by
introducing an objective function which assigns positive
cost to the samples which we wish to avoid and zero cost
to the other samples. The standard linear programming
algorithms for minimizing this objective function will then
produce the desired design.
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5. Bounds on the support size of a sampling design equiva-
lent to SRS(N,n;.

*
Let d be a sampling design whose support size, Md*
is minimum among all sampling designs equivalent to SRS(N,n).

Then we have

AR < mpr c MU (10)

n-1 2

where (xJ denotes the smallest integer greater than or
equal to x. Though the upper bound is already stated in
Theorem 3.2, we can prove it easily by representing a* in

it equivalent form

*
PFpx = A1 . (11)

Now recall that P has an (g) rows and (ﬂ) columns.
Since (1;') = N(N-1)/2 < (f‘l) thus rank of P is at most

N(N-1)/2 [indeed it is precisely N(N-1)/2 by Lemma 5.1
of Foody and Hedayat (1977)). Therefore 2*1 can be ex-
pressed as a linear combination of at most N(N-1) columns

of P meaning that F_ % has at most N(N-1)/2 nonzero

D
components. Thus Myx < N(N-1)/2.

To prove the lower bound, note that Hd*(i,J) 2 1. Thus'
to cover all pairs, each element of the population must
appear in at least ((N-1)/(n-1)j distinct samples in the
support of d*. Now let m be the smallest number of

samples of size n needed to cover (g) pairs. Thus, the

T
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average number of distinct samples in which each element
appears, mn/N, must be at least ((N-1)/(n-1)}. Thus
Mg* > ((W/n)((N-1)/(n-1)}}.

“

There are infinitely many N's and n's for which
sampling designs equivalent to SRS(N,n) exist and have
support size ((N/n){(N-1)/(n-1)}}. Therefore, the lower
bound in (10) is sharp. As an example, let N = 7, and

n = 3. Then we have:

Example 5.1. Below is a sampling design with the minimum

support size which is eqguivalent to SRS(7,3).

Sample Probability Sample Probability
124 1/7 561 T
235 P 672 /7
346 /7 713 /7
457 1/7 , H

Note that in this case {((N/n){(N-1)/(n-1)}} = 7.

There are N's and n's for which the lower bound in

(10) is much too large. For example, when N =8 and n= 3%

the lower bound in (10) becomes 1ll. But from Foody and

Hedayat (1977) and Pesotchinsky (1977) we know that in this

case the minimum support size is 22. In Example 4.1 we

exhibited such a sampling design.

|
|
|
|
i
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The problem of the characterization of all N's and
n's for which the lower bound in (10) is achievable remains
unsolved and it is a hard problem indeed. It is interesting

to study the properties of S and Pd if the support size

d
of d is minimum, as given in (10). One thing which we can
say is this: If such a sampling design exists and if
((N/n)((N-1)/(n-1)}} = N then d must be a uniform sampling
design and, moreover, d exists if and only if there is a

BIB design with N blocks of size n based on N treat-

ments.

Note that ((N/n){((N-1)/(n-1)j§ > N and thus there is
no sampling design equivalent to SRS(N,n) and having
support size less than N. Another question of interest
is: Is there any sampling design equivalent to SRS(N,n)
with support size N + 1? The following proposition answers

this question.

Proposition 5.1. There is no sampling design, d, of size n

based on a population of size N with properties:

(1) d »~ SRS(N,n) and (ii) c(Sd) =N+ 1.

Assume to the contrary and let d be such a sampling

design. It is not difficult to see that there is an integer

6 such that Gpd(s) is an integer for all s in the sup-

port of d. Then the samples in S, together with Gpd(s)'s,
form a BIB design based on N + 1 distinct blocks. This
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contradicts Theorem 3.2 of van Lint and Ryser (1972) which
says there is no BIB design with precisely N 4 1 distinct
blocks.

In regard to problems listed in Section 3, our experi-
ence indicates that if d, 1is a SRS(N,n) and if there
exists a sampling design, d,, equivalent to SRS(N,n) with
support size N then there are integers between N (the
support of d,) and (g} (the support of SRS(N,n)) for
which there are no sampling designs with such support sizes
and equivalent to SRS(N,n). The result in Proposition 5.1
gives one such integer for arbitrary N and n. Let us
consider the case of N =7 and n = 3. In this case
there are no sampling designs equivalent to SRS(7.3) with
support sizes 8, 9, 10, 12. Whether or not there is a
sampling design with support size 16 is unknown to this
writer. However, if M 1is an integer between 7 and 35,

and M 4 8, 9, 10, 12, 16, then there is a sampling design

with support size M and equivalent to SRS(7,3), according

to Hedayat and Li (1977).

If the miniﬁum support size is not N then we know
very little about the support sizes of the sampling designs
equivalent to SRS(N,n). Whether or not the case of N = 8
and n = 3 indicates something is not clear to us. In
this case the minimum possible support size is 22 and, as

Foody and Hedayat (1977) have shown, for every integer

vy e P RO A ST 8 TE

S it




17.

g2 M‘S 55 there is a sampling design with support size
M and equivalent to SRS(8,3). Any such sampling design

for N=8 and n =3 will be nonuniform.

In Section 6 we shall study the method of trade off
which is a very useful technique for finding sampling de-
signs with support size smaller than (g) and equivalent
to SRS(N,n).

6. The method of trade off and its application in sampling.

The idea of trade off is as follows: For given N and
n we shall write down SRS(N,n). Then in order to reduce
the support of SRS(N,n) we shall try to find two sets of
samples, S; and S,, in the support of SRS(N,n) such that
it is possible to remove 82 from the support and assign
the related probabilities to samples in S1 in such a
fashion that the resulting sampling design is equivalent to

SRS(N,n). If this can be done, then we say S, has been

2
traded off for Sl' But the theory which will be presented

is much broader than this.

Recall the notation of Section 4 and let T be a non-

zero integer column vector of dimension (g).
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Definition 6.1. The vector T 1is called a trade if

PT = O, (12)

and the sum of all positive entries in a trade is called

its volume.

Ignore the entries of T which are zero and let

tl,tz,...,t denote the positive components and

g
t&,té,...,tL denote the negative components. Thus

Tt, + zt; =0, (13)

i

Be definition of P and the existgnce of T we can

immediately identify two sets of samples of size n
Sl = [81,82,..-,Sg1, 82 = {Si,Sé,...,S;I], Sl n S2 = ¢’

such that if (x,y) is a pair of elements in some sample

of S then

1

3 £, + T W 5 (14)
543 (x,¥) 4 843 (x,y) e

Conversely, if we are given two sets of samples and two

sets of integers of the form:

sample integer sample integer
’
o 1 o 2
’ ’
52 t 82 t2
4
: : : e
’ ’
sg tg Sh th




19,
with properties‘(IB) and (14) we can immediately write down
a vector T which is a trade. The following example eluci-

dates the above argument.

Example 6.1. Let N =7 and n = 3. Consider the follow-

ing samples and related integers

sample integer Ssample integer
123 2 124 -1
145 1 125 -1
156 1 135 -1
246 1 136 -1
257 | 236 -1
356" 1 237 -1
367 1 456 -1
567 -1

The reader can check for himself that these two sets of
samples and corresponding integers satisfy (13) and (1%4).
As an example let (xy) = (12) we see that the sample 123
contains (12) with t = 2. In the set of samples with nega-
tive integers there are two samples 124 and 125 with

= -1 and t' = "10

’
t 2

1
To write the corresponding vector T associated with

Example 6.1, let T be a column vector of size (;) = 35.

Note that by definition of P each component of T is

related to a specific sample. For those samples listed
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above enter their corresponding t's or t’'s in the
appropriate components of T and enter zero for all other

samples.

For given N and n 1let FD be a frequency vector as

defined in Section 4. Then we have:

Theorem 6.1. If T is a trade and if F,, determines a

sampling design equivalent to SRS(N,n) then P, + T

determines a sampling design which is equivalent to

SRS(N,n) provided that no entry of F, + T 1is negative.

Example 6.2. Let N =7 and n= 3 and let FD

column vector with all its entries equal to 1. Let T be

be the

the trade exhibited in Example 6.1. Then F, + T provides
us a sampling design which is equivalent to SRS(7,3). Note
that the support size of the corresponding design is 27

and the design will be nonuniform. The corresponding
sampling design can be easily obtained as follows. Delete
from the support SRS(7,3) [note that the sampling design

associated with our choice of F, is precisely SRS(7,3)]

D
those samples whose related integers are =1l. Since there
are 8 such samples we will be left with 35 - 8 = 27
samples. These 27 samples will be the support of the
sampling design associated with FD + T. The correspond-
ing probabilities are calculated as follows: The probabi-

lity assoclated with a sample in the new support will remain
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the same if that sample did not appear in the trade. Other-
wise, the corresponding new probability is 1/35 + t/35,
where t 1is its related integer in T. Thus in this case
probability associated with the sample (123) will be

3/35.

Note that the trade in Example 6.1 can be used in finding
sampling designs with support sizes smaller than (g) and
equivalent to SRS(N,3), as long as N > 7.

Hedayat and Li (1977) have studied the theory of trade
off in the context of BIB designs with repeated blocks and
have obtained several results directly applicable in sampling.

For example, they have shown that:

Theorem 6.3. A trade of volume i exists if and only if

1 $1,2, 5 or 5,

Due to limitation of space, several other results on

trade off will be reported elsewhere.
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estimability of the basic parametors of W , such as the population total,

| we insist that the union of the subsets in Sd be U and Pd(s) >0

: for each s in Sd Yo

The first order inclusion probability of the unit i under d is

defined to be

\

l

L‘ Hd(i) = ¥ : Pd(s),
3 sdi

and the second order (joint) inclusion probability of the units i and

i d#3j) under d is

Hd(i)j) o ):. ! pd(S).
s31,j

Since the introduction of unequal probability sampling by Horvitz and
Thompson (1952), the emphasis in the theory has been towards working with
the above inclusion prci:abilities. This paper is mainly concerned with

problems related to these inclusion probabilities.
Two sampling designs d1 and d2 are said to be equivalent with
respect to these inclusion probabilities if:

Il 1) =1I (i), I iy d) = i (i’j); Vk’j'
dl dz dl d2

This paper studies the extent to which these inclusion probabilities charac
3 terize the sampling designs. This study has led us to sampling designs
which have applications in controlled sampling. We have studied the follow-
ing problem, among others. The classical simple random sample of size n

based on W, denoted SRS(N,n), is a sampling design whose support, Sd ’

consists of all : possible samples of size n and whose probability

distribution, Py is uniform on the support. Thus a problem of interest

may be less than

is to find sampling designs equivalent to SRS(N,n) but whose support size#
T and for which the probability distribution on their

supports may or may not be uniform. It is shown that this can always be

done. Such sampling designs have applications to controlled sampling.
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